第三次
本文内容由简易程序从latex批量转义而来, 排版并不友好, 相对精美版请见课程整理
第三次作业
习题四 13
解:
- \(R_1 \circ R_2=\{(1,4),(1,3)\}\)
- \(R_2 \circ R_1=\{(3,4)\}\)
- \(R_1\circ R_2\circ R_1=\varnothing\)
- \(R_1^3=\{(1,1),(1,4)\}\)
习题四 15
解:
- \(A\) 非空, 则 \(\exists\ a \in A\) 取 \(R_1=\varnothing,R_2=\{(a,a)\}\).
习题四 16
解:
- $
\forall (a,b) \in R\cap \widetilde{R} \Rightarrow (a,b) \in R \wedge (a,b) \in \widetilde{R} \\ \Rightarrow (a,b) \in R \wedge (b,a) \in R \Rightarrow a=b.
$
由此说明 \(R \cap \widetilde{R}\) 中只有对角线可能非零, 即非零元素个数不超过 \(n\).
习题四 17
解:
-
(1) 真, \(\forall a \in A, (a,a) \in R_1 \cap (a,a) \in R_2 \Rightarrow (a,a) \in R_1 \circ R_2\).
(2) 假, 取 \(R_1=\{(1,2)\},R_2=\{(2,1)\}\Rightarrow R_1 \circ R_2=\{(1,1)\}\) 不是反自反的.
(3) 假, 取 \(R_1=\{(1,2),(2,1)\},R_2=\{(2,3),(3,2)\}\Rightarrow R_1\circ R_2=\{(1,3)\}\).
(4) 假, 取 \(R_1=\{(1,3),(2,3)\},R_2=\{(3,1),(3,2)\}\Rightarrow R_1\circ R_2=\{(1,1),(2,2),(1,2),(2,1)\}\).
(5) 假, 取 \(R_1=\{(1,4),(2,5)\},R_2=\{(4,2),(5,3)\}\Rightarrow R_1\circ R_2=\{(1,2),(2,3)\}\).
习题四 18
证明
-
由 \(R^+\circ R^+=R^+ \Rightarrow (R^+)^+=\bigcup (R^+)^k=R^+\).
同理 \(R^*\circ R^*=R^*\Rightarrow (R^*)^*=R^*\).
习题四 19
(1)
**证明**
- 由 $(1,2),(2,4) \in R,(1,4) \notin R\Rightarrow R$ 不是传递关系 .
(2)
**解:**
- $R_1=\{(1,2),(1,3),(1,4),(2,4),(2,3),(3,4),(4,3),(3,3)\}$.
(3) 存在, 全关系.
习题四 20
(1)
**证明**
- 自反: $\forall (a,b) \in A\times A,a+b=b+a\Rightarrow ((a,b),(a,b)) \in R$.
对称: $\forall ((a,b),(c,d))\in R,a+d=b+c \Rightarrow c+b=d+a\Rightarrow ((c,d),(a,b)) \in R$.
传递: $\forall ((a,b),(c,d)),((c,d),(e,f))\in R,a+d=b+c,c+f=d+e\Rightarrow a-b=c-d=e-f\Rightarrow a+f=e+b\Rightarrow((a,b),(e,f))\in R$.
(2) \([(2,5)]_R=\{(1,4),(2,5),(3,6),(4,7),(5,8)\}\).
(3) 不对, \(R\) 中的元素形式为 \(((a,b),(c,d))\) 而 \(A\times A\) 中的元素形式为 \((a,b)\), 应该说 \(R\subseteq (A\times A)\times(A\times A)\).
习题四 23
(1)
**证明**
- 自反: $\forall a \in A, (a,a)\in R_1\wedge(a,a) \in R_2\Rightarrow (a,a)\in R_1 \cap R_2$.
对称: $\forall (a,b) \in R_1 \cap R_2,(a,b) \in R_1\wedge (a,b)\in R_2\Rightarrow (b,a) \in R_1\wedge (b,a)\in R_2\\
\Rightarrow (b,a) \in R_1 \cap R_2$.
传递: $\forall (a,b),(b,c) \in R_1\cap R_2,(a,b),(b,c) \in R_1\Rightarrow (a,c) \in R_1$, 同理 $(a,c) \in R_2$, 故 $(a,c) \in R_1\cap R_2$.
(2) 取 \(R_1=\{(1,1),(2,2),(3,3),(1,2),(2,1)\},R_2=\{(1,1),(2,2),(3,3),(2,3),(3,2)\}\).
习题四 28
\begin{tikzpicture}
\graph {
1 <-> 2;
1 <-> 3;
1 ->[loop above] 1;
2 ->[loop above] 2;
3 ->[loop left] 3;
2 <-> 3;
4 ->[loop above] 4;
5 <-> 6;
5 ->[loop above] 5;
6 ->[loop above] 6;
};
\end{tikzpicture}
习题四 31
解:
-
(1)
\begin{tikzpicture}[node distance=10pt]
\node[draw, circle] (4) {4};
\node[draw, circle, below=of 4] (2) {2};
\node[draw, circle, right=20pt of 2] (3) {3};
\node[draw, circle, below=of 2] (1) {1};\graph{ (4) -- (2) -- (1); (3) -- (1) };
\end{tikzpicture}
(2)
\begin{tikzpicture}[node distance=10pt]
\node[draw, circle] (36) {36};
\node[draw, circle, below=of 36] (12) {12};
\node[draw, circle, below=of 12] (6) {6};
\node[draw, circle, below=of 6] (3) {3};
\node[draw, circle, right=20pt of 3] (2) {2};
\node[draw, circle, right=20pt of 6] (26) {26};\graph{ (36) -- (12) -- (6) -- (3); (6) -- (2); (26) -- (2); };
\end{tikzpicture}
(3)
\begin{tikzpicture}[node distance=15pt]
\node[draw, circle] (8) {8};
\node[draw, circle, right=20pt of 8] (12) {12};
\node[draw, circle, below=of 12] (6) {6};
\node[draw, circle, below=of 8] (4) {4};
\node[draw, circle, below=of 6] (3) {3};
\node[draw, circle, below=of 4] (2) {2};
\node[draw, circle, right=20pt of 3] (5) {5};
\node[draw, circle, right=20pt of 5] (7) {7};
\node[draw, circle, right=20pt of 7] (11) {11};
\node[draw, circle, right=20pt of 6] (9) {9};
\node[draw, circle, below=of 3] (1) {1};\graph{ (8) -- (4) -- (2) -- (1); (12) -- (6) -- (3) -- (1); (12) -- (4); (6) -- (2); (9) -- (3); (1) -- { (5),(7),(11) } };
\end{tikzpicture}
\(\{2,3,6\}:6,\text{无},6,\{2,3\},6,1\).
\(\{2,4,6\}:\text{无},2,\{4,6\},2,\text{无},2\).
\(\{4,8,12\}:\text{无},4,\{8,12\},4,4,\text{无}\).
习题四 32
解:
-
\(A=\{0,1,2,3,4,5,6\}\).
\(\preceq=\{(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,1),\\(2,2),(2,5),(3,3),(3,5),(5,5),(4,4),(4,6),(6,6)\}\).
习题四 34
证明
-
自反: \(\forall (a,b) \in A\times B\) 由 \((a,a) \in \preceq_1 \wedge (b,b) \in \preceq_2 \Rightarrow ((a,b),(a,b)) \in \preceq_3\).
反对称: \(\forall ((a_1,b_1),(a_2,b_2)) \in \preceq_3 \wedge ((a_2,b_2),(a_1,b_1)) \in \preceq_3, \\ (a_1,a_2),(a_2,a_1) \in \preceq_1 \wedge (b_1,b_2),(b_2,b_1) \in \preceq_2 \Rightarrow a_1=a_2\wedge b_1=b_2 \Rightarrow (a_1,b_1)=(a_2,b_2)\).
传递: \(\forall ((a_1,b_1),(a_2,b_2)),((a_2,b_2),(a_3,b_3)) \in \preceq_3, (a_1,a_2),(a_2,a_3) \in \preceq_1, \\ \Rightarrow (a_1,a_3)\in \preceq_1\) 同理 \((b_1,b_3) \in \preceq_2 \Rightarrow ((a_1,b_1),(a_3,b_3)) \in \preceq_3\).
综上 \(\preceq_3\) 是 \(A\times B\) 上的半序关系.
习题四 37
解:
-
(1) 半序
(2) 良序
(3) 良序
评论